↑Результаты Гёделя и Коэна (Cohen) показывают, что ни континуум-гипотеза, ни её отрицание не противоречат системе аксиом Цермело — Френкеля (стандартной системе аксиом теории множеств). Таким образом, континуум-гипотезу в этой системе аксиом невозможно ни доказать, ни опровергнуть (при условии, что эта система аксиом непротиворечива).
↑Курт Гёдельдоказал, что непротиворечивость аксиом арифметики нельзя доказать, исходя из самих аксиом арифметики. В 1936 годуГерхард Генцен доказал непротиворечивость арифметики, используя примитивно рекурсивную арифметику с дополнительной аксиомой для трансфинитной индукции до ординала ε0.
↑Согласно Рову (Rowe) и Грею (Gray) (см. далее), большинство проблем были решены. Некоторые из них не были достаточно точно сформулированы, однако достигнутые результаты позволяют рассматривать их как «решённые». Ров и Грей говорят о четвёртой проблеме как о такой, которая слишком нечётко поставлена, чтобы судить о том, решена она или нет.
↑Решена Зигелем и Гельфондом (и независимо Шнайдером) в более общем виде: если a ≠ 0, 1 — алгебраическое число, и b — алгебраическое иррациональное, то ab — трансцендентное число
↑Проблема № 8 содержит две известные проблемы, первая из которых не решена, а вторая решена частично. Первая из них, гипотеза Римана, является одной из семи Проблем тысячелетия, которые были обозначены как «Проблемы Гильберта» 21-го века.
↑Проблема № 9 была решена для абелевого случая; неабелев случай остаётся нерешённым.
↑Юрий Матиясевич в 1970 году доказал алгоритмическую неразрешимость вопроса о том, имеет ли произвольное диофантово уравнение хотя бы одно решение. Изначально проблема была сформулирована Гильбертом не в качестве дилеммы, а в качестве поиска алгоритма: в то время, видимо, даже не задумывались о том, что может существовать отрицательное решение подобных проблем.
↑Утверждение о конечной порождённости алгебры инвариантов доказано для произвольных действий редуктивных групп на аффинных алгебраических многообразиях. Нагата в 1958 году построил пример линейного действия унипотентной группы на 32-мерном векторном пространстве, для которого алгебра инвариантов не является конечно порождённой. В. Л. Попов доказал, что если алгебра инвариантов любого действия алгебраической группы G на аффинном алгебраическом многообразии конечно порождена, то группа G редуктивна.
↑Первая (алгебраическая) часть проблемы № 16 более точно формулируется так. Харнаком доказано, что максимальное число овалов равно M=(n-1)(n-2)/2+1, и что такие кривые существуют — их называют M-кривыми. Как могут быть расположены овалы M-кривой? Эта задача сделана до степени n=6 включительно, а для степени n=8 довольно много известно (хотя её ещё не добили). Кроме того, есть общие утверждения, ограничивающие то, как овалы M-кривых могут быть расположены — см. работы Гудкова, Арнольда, Роона, самого Гильберта (впрочем, стоит учитывать, что в доказательстве Гильберта для n=6 есть ошибка: один из случаев, считаемый им невозможным, оказался возможным и был построен Гудковым). Вторая (дифференциальная) часть остаётся открытой даже для квадратичных векторных полей — неизвестно даже, сколько их может быть, и что оценка сверху существует. Даже индивидуальная теорема конечности (то, что у каждого полиномиального векторного поля имеется конечное число предельных циклов) была доказана только недавно. Она считалась доказанной Дюлаком, но в его доказательстве была обнаружена ошибка, и окончательно эта теорема была доказана Ильяшенко и Экалем, для чего каждому из них пришлось написать по книге.
↑Приведён перевод исходного названия проблемы, данного Гильбертом: «16. Problem der Topologie algebraischer Curven und Flächen» 2012 йылдың 5 февраль көнөндә архивланған. (нем.). Однако, более точно её содержание (как оно рассматривается сегодня) можно было бы передать следующим названием: «Число и расположение овалов вещественной алгебраической кривой данной степени на плоскости; число и расположение предельных циклов полиномиального векторного поля данной степени на плоскости». Вероятно (как можно увидеть из английского перевода текста анонса (инг.)), Гильберт считал, что дифференциальная часть (в реальности оказавшаяся значительно труднее алгебраической) будет поддаваться решению теми же методами, что и алгебраическая, и потому не включил её в название.
↑Bieberbach L. Über die Bewegungsgruppen der Euklidischen Raume I.—Math. Ann., 1911, 70, S. 297—336; 1912, 72, S. 400—412.
↑Ров и Грей также называют проблему № 18 «открытой» в своей книге за 2000 год, потому что задача упаковки шаров (известная также как задача Кеплера) не была решена к тому времени, однако на сегодняшний день есть сведения о том, что она уже решена (см. далее). Продвижения в решении проблемы № 16 были сделаны в недавнее время, а также в 1990-х.
Демидов С. С. «Математические проблемы» Гильберта и математика XX века // Историко-математические исследования. — М.: Янус-К, 2001. — № 41 (6). — С. 84-99.